Recent trends in antimicrobial peptide prediction using machine learning techniques
نویسندگان
چکیده
The importance to develop effective alternatives to known antibiotics due to increased microbial resistance is gaining momentum in recent years. Therefore, it is of interest to predict, design and computationally model Antimicrobial Peptides (AMPs). AMPs are oligopeptides with varying size (from 5 to over100 residues) having key role in innate immunity. Thus, the potential exploitation of AMPs as novel therapeutic agents is evident. They act by causing cell death either by disrupting the microbial membrane by inhibiting extracellular polymer synthesis or by altering intra cellular polymer functions. AMPs have broad spectrum activity and act as first line of defense against all types of microorganisms including viruses, bacteria, parasites, fungi and as well as cancer (uncontrolled celldivision) progression. Large-scale identification and extraction of AMPs is often non-trivial, expensive and time consuming. Hence, there is a need to develop models to predict AMPs as therapeutics. We document recent trends and advancement in the prediction of AMP.
منابع مشابه
Machine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملDevelopment of an Ensemble Multi-stage Machine for Prediction of Breast Cancer Survivability
Prediction of cancer survivability using machine learning techniques has become a popular approach in recent years. In this regard, an important issue is that preparation of some features may need conducting difficult and costly experiments while these features have less significant impacts on the final decision and can be ignored from the feature set. Therefore, developing a machine for p...
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملModeling of Chloride Ion Separation by Nanofiltration Using Machine Learning Techniques
In this work, several machine learning techniques are presented for nanofiltration modeling. According to the results, specific errors are defined. The rejection due to Nanofiltration increases with pressure but decreases with increasing the concentration of chloride ion. Methods of machine learning represent the rejection of nanofiltration as a function of concentration, pH, pressure and also ...
متن کاملStock price analysis using machine learning method(Non-sensory-parametric backup regression algorithm in lin-ear and nonlinear mode)
The most common starting point for investors when buying a stock is to look at the trend of price changes. In recent years, different models have been used to predict stock prices by researchers, and since artificial intelligence techniques, including neural networks, genetic algorithms and fuzzy logic, have achieved successful re-sults in solving complex problems; in this regard, more exploita...
متن کامل